
pybuck
Release 0.1

Jan 15, 2022

Contents:

1 Overview 1

2 Installation 3

3 Application Guide 5
3.1 Setting up an analysis . 5
3.2 Buckingham Pi . 6
3.3 Re-expression . 6
3.4 Empirical Dimension Reduction . 7
3.5 Lurking Variables . 8
3.6 References . 9

4 Dimensional Analysis Theory 11

5 References 13

6 Indices and tables 15

i

ii

CHAPTER 1

Overview

This package supports dimensional analysis in Python.

TODO

1

https://en.wikipedia.org/wiki/Dimensional_analysis

pybuck, Release 0.1

2 Chapter 1. Overview

CHAPTER 2

Installation

Change directories to the repo location and run python setup.py install.

3

pybuck, Release 0.1

4 Chapter 2. Installation

CHAPTER 3

Application Guide

This is a short description of applications of pybuck. See the demo for an executable version of this tour.

3.1 Setting up an analysis

The first stage of performing dimensional analysis is to describe the physical dimensions of the problem. Using
col_matrix, we can succinctly define a dimension matrix. As a running example, we consider the inputs for the
Reynolds pipe flow problem [1]. There are five input quantities, described in the table below.

Expressing this information with pybuck, we specify each column of the matrix as a Python dict of non-zero
entries.

from pybuck import *

df_dim = col_matrix(
rho = dict(M=1, L=-3),
U = dict(L=1, T=-1),
D = dict(L=1),
mu = dict(M=1, L=-1, T=-1),
eps = dict(L=1)

)
df_dim

rowname rho U D mu eps
0 T 0 -1 0 -1 0
1 M 1 0 0 1 0
2 L -3 1 1 -1 1

5

https://github.com/zdelrosario/pybuck/blob/master/examples/quick_demo.ipynb

pybuck, Release 0.1

The dimension matrix is now assigned to df_dim—each entry is an exponent, associated with an input and physical
dimension. For instance the rho column has the entry -3 in the L row, indicating that rho has a factor of L^{-3}
in its physical dimensions.

Note that we did not need to assign the zeros in the matrix, and both variable and dimension names are provided by
keyword argument (not by string). Finally, note that the ordering of row labels in rowname is automatically handled
by col_matrix(); for example:

col_matrix(
U = dict(L=+1, T=-1),
V = dict(T=-1, L=+1)

)

rowname U V
0 T -1 -1
1 L 1 1

3.2 Buckingham Pi

The central result of dimensional analysis is the buckingham pi theorem. This result provides a means for a priori
dimension reduction; a lossless reduction in the number of inputs for a physical system. Using the dimension matrix,
we can compute a basis for the set of dimensionless numbers.

df_pi = pi_basis(df_dim)
df_pi

rowname pi0 pi1
0 rho -0.521959 0.115207
1 U -0.521959 0.115207
2 D -0.413385 -0.632884
3 mu 0.521959 -0.115207
4 eps -0.108575 0.748091

This output indicates that, despite there being five inputs, only two dimensionless numbers are necessary to fully
describe the system.

3.3 Re-expression

The dimensionless numbers above are a basis for the pi subspace—the set of all valid dimensionless numbers for the
problem at hand. However, they are fairly difficult to physically interpret. Re-expressing the dimensionless numbers
in a user-selected basis can help us with interpretation.

First, we define a “standard” dimensionless basis.

df_standard = col_matrix(
Re = dict(rho=1, U=1, D=1, mu=-1), # Reynolds number
R = dict(eps=1, D=-1) # Relative roughness

)
df_standard

6 Chapter 3. Application Guide

https://en.wikipedia.org/wiki/Buckingham_%CF%80_theorem

pybuck, Release 0.1

rowname Re R
0 rho 1 0
1 U 1 0
2 eps 0 1
3 D 1 -1
4 mu -1 0

Re is the Reynolds number, which represents the ratio of inertial to viscous forces. R is the relative roughness, which
represents the ratio of roughness to bulk lengthscales. We can re-express df_pi in terms of these standard numbers
to make them more physically interpretable.

df_pi_prime = express(df_pi, df_standard)
df_pi_prime

rowname pi0 pi1
0 Re -0.521959 0.115207
1 R -0.108575 0.748091

Based on the weights above, we can see that pi0 is mostly weighted towards Re, while pi1 is mostly weighted
towards R. However, both are mixtures of the two standard dimensionless numbers.

3.4 Empirical Dimension Reduction

Next we demonstrate combining empirical dimension reduction with dimensional analysis. This allows one to equip
data-driven methods with physical interpretation. First, we generate some data for the Reynolds pipe flow problem.
This follows the setup described in Reference 2.

import statsmodels.formula.api as smf
import numpy as np
import pandas as pd
from model_pipe import fcn

Simulate collecting data
np.random.seed(101)
n_data = 500

Q_names = ["rho", "U", "D", "mu", "eps"]
Q_lo = np.array([1.0, 1.0e+0, 1.3, 1.0e-5, 0.5e-1])
Q_hi = np.array([1.4, 1.0e+1, 1.7, 1.5e-5, 2.0e-1])
Q_all = np.random.random((n_data, len(Q_lo))) * (Q_hi - Q_lo) + Q_lo

F_all = np.zeros(n_data)
for i in range(n_data):

res = fcn(Q_all[i])
F_all[i] = res

df_data = pd.DataFrame(
data=Q_all,
index=range(n_data),
columns=Q_names

)
df_data["f"] = F_all

3.4. Empirical Dimension Reduction 7

pybuck, Release 0.1

To perform empirical dimension reduction, we will carry out ordinary least squares to regress the output f on the
inputs rho, U, D, mu, eps. However, if we log transform our inputs, any linear dimension reduction can
be interpreted as a product of the inputs [2]. This will allow us to combine dimension reduction with dimensional
analysis. To illustrate:

df_log = df_data.copy()
df_log[Q_names] = np.log(df_log[Q_names])
df_log

lm = smf.ols(
"f ~ rho + U + D + mu + eps",
data=df_log

).fit()

We extract the regression coefficients with the following recipe.

df_dr = pd.DataFrame({
"rowname": lm.params.index[1:],
"pi": lm.params.values[1:]

})
df_dr

rowname pi
0 rho 0.000658
1 U -0.000247
2 D -0.049711
3 mu -0.000014
4 eps 0.045981

We now check the physical units of the proposed direction.

inner(df_dim, df_dr)

rowname pi
0 M 0.000644
1 L -0.005936
2 T 0.000261

This is very nearly dimensionless. We can re-express this number in terms of our standard basis.

express(df_dr, df_standard)

rowname pi
0 Re -0.000412
1 R 0.047640

Re-expression reveals that the empirical dimension reduction has recovered the relative roughness R, which fully
describes the output variation in the setting considered.

3.5 Lurking Variables

Finally, we slightly modify the problem above to demonstrate lurking variable detection.

8 Chapter 3. Application Guide

pybuck, Release 0.1

Suppose that during data collection we did not know that eps is a physical input. In this case, we would not know to
vary it in our experiments, and it might remain fixed to an unknown value. To model this, we fix eps=0.1 in data
generation.

Generate frozen-eps data
Fp_all = np.zeros(n_data)
Qp_all = Q_all
Qp_all[:, 4] = [0.1] * n_data

for i in range(n_data):
Fp_all[i] = fcn(Qp_all[i])

df_frz = pd.DataFrame(
data=Qp_all,
index=range(n_data),
columns=Q_names

)
df_frz["f"] = Fp_all

We repeat computing a linear dimension reduction on the frozen data.

df_frz_log = df_data.copy()
df_frz_log[Q_names] = np.log(df_frz_log[Q_names])
df_frz_log

lm_frz = smf.ols(
"f ~ rho + U + D + mu",
data=df_frz_log

).fit()

df_frz_dr = pd.DataFrame({
"rowname": lm_frz.params.index[1:],
"pi": lm_frz.params.values[1:]

})

Let’s inspect the physical dimensions of df_frz_dr.

inner(df_dim, df_frz_dr)

rowname pi
0 M -0.005219
1 L -0.049977
2 T 0.005100

This direction is not dimensionless! This indicates that a lurking variable is present, and it has units of L. This
procedure has correctly identified the presence of our lurking variable eps which has dimensions $[\epsilon] = L$.

3.6 References

[1] O. Reynolds, “An experimental investigation of the circumstances which determine whether the motion of water
shall be direct or sinuous, and of the law of resistance in parallel channels” (1883) Royal Society

[2] Z. del Rosario, M. Lee, and G. Iaccarino, “Lurking Variable Detection via Dimensional Analysis” (2019)
SIAM/ASA Journal on Uncertainty Quantification

3.6. References 9

pybuck, Release 0.1

10 Chapter 3. Application Guide

CHAPTER 4

Dimensional Analysis Theory

TODO

11

pybuck, Release 0.1

12 Chapter 4. Dimensional Analysis Theory

CHAPTER 5

References

13

pybuck, Release 0.1

14 Chapter 5. References

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

15

	Overview
	Installation
	Application Guide
	Setting up an analysis
	Buckingham Pi
	Re-expression
	Empirical Dimension Reduction
	Lurking Variables
	References

	Dimensional Analysis Theory
	References
	Indices and tables

