

Welcome to pybuck’s documentation!

Contents:

	Overview

	Installation

	Application Guide
	Setting up an analysis

	Buckingham Pi

	Re-expression

	Empirical Dimension Reduction

	Lurking Variables

	References

	Dimensional Analysis Theory

	References

Indices and tables

	Index

	Module Index

	Search Page

Overview

This package supports dimensional
analysis [https://en.wikipedia.org/wiki/Dimensional_analysis] in Python.

TODO

Installation

Change directories to the repo location and run python setup.py install.

Application Guide

This is a short description of applications of pybuck. See the
demo [https://github.com/zdelrosario/pybuck/blob/master/examples/quick_demo.ipynb]
for an executable version of this tour.

Setting up an analysis

The first stage of performing dimensional analysis is to describe the physical
dimensions of the problem. Using col_matrix, we can succinctly define a
dimension matrix. As a running example, we consider the inputs for the Reynolds
pipe flow problem [1]. There are five input quantities, described in the table
below.

	Input
	Symbol
	Units

	Fluid density
	$\rho
	$\frac{M}{L^3}$

	Fluid bulk velocity
	U
	$\frac{L}{T}$

	Pipe diameter
	D
	L

	Fluid dynamic viscosity
	μ
	$\frac{M}{LT}$

	Roughness lengthscale
	ϵ
	L

Expressing this information with pybuck, we specify each column of the matrix
as a Python dict of non-zero entries.

from pybuck import *

df_dim = col_matrix(
 rho = dict(M=1, L=-3),
 U = dict(L=1, T=-1),
 D = dict(L=1),
 mu = dict(M=1, L=-1, T=-1),
 eps = dict(L=1)
)
df_dim

 rowname rho U D mu eps
0 T 0 -1 0 -1 0
1 M 1 0 0 1 0
2 L -3 1 1 -1 1

The dimension matrix is now assigned to df_dim—each entry is an exponent,
associated with an input and physical dimension. For instance the rho column
has the entry -3 in the L row, indicating that rho has a factor of
L^{-3} in its physical dimensions.

Note that we did not need to assign the zeros in the matrix, and both variable
and dimension names are provided by keyword argument (not by string). Finally,
note that the ordering of row labels in rowname is automatically handled
by col_matrix(); for example:

col_matrix(
 U = dict(L=+1, T=-1),
 V = dict(T=-1, L=+1)
)

 rowname U V
0 T -1 -1
1 L 1 1

Buckingham Pi

The central result of dimensional analysis is the buckingham pi
theorem [https://en.wikipedia.org/wiki/Buckingham_%CF%80_theorem]. This result
provides a means for a priori dimension reduction; a lossless reduction in the
number of inputs for a physical system. Using the dimension matrix, we can
compute a basis for the set of dimensionless numbers.

df_pi = pi_basis(df_dim)
df_pi

 rowname pi0 pi1
0 rho -0.521959 0.115207
1 U -0.521959 0.115207
2 D -0.413385 -0.632884
3 mu 0.521959 -0.115207
4 eps -0.108575 0.748091

This output indicates that, despite there being five inputs, only two
dimensionless numbers are necessary to fully describe the system.

Re-expression

The dimensionless numbers above are a basis for the pi subspace—the set of all
valid dimensionless numbers for the problem at hand. However, they are fairly
difficult to physically interpret. Re-expressing the dimensionless numbers in
a user-selected basis can help us with interpretation.

First, we define a “standard” dimensionless basis.

df_standard = col_matrix(
 Re = dict(rho=1, U=1, D=1, mu=-1), # Reynolds number
 R = dict(eps=1, D=-1) # Relative roughness
)
df_standard

 rowname Re R
0 rho 1 0
1 U 1 0
2 eps 0 1
3 D 1 -1
4 mu -1 0

Re is the Reynolds number, which represents the ratio of inertial to viscous
forces. R is the relative roughness, which represents the ratio of roughness
to bulk lengthscales. We can re-express df_pi in terms of these standard
numbers to make them more physically interpretable.

df_pi_prime = express(df_pi, df_standard)
df_pi_prime

 rowname pi0 pi1
0 Re -0.521959 0.115207
1 R -0.108575 0.748091

Based on the weights above, we can see that pi0 is mostly weighted towards
Re, while pi1 is mostly weighted towards R. However, both are mixtures
of the two standard dimensionless numbers.

Empirical Dimension Reduction

Next we demonstrate combining empirical dimension reduction with dimensional
analysis. This allows one to equip data-driven methods with physical
interpretation. First, we generate some data for the Reynolds pipe flow problem.
This follows the setup described in Reference 2.

import statsmodels.formula.api as smf
import numpy as np
import pandas as pd
from model_pipe import fcn

Simulate collecting data
np.random.seed(101)
n_data = 500

Q_names = ["rho", "U", "D", "mu", "eps"]
Q_lo = np.array([1.0, 1.0e+0, 1.3, 1.0e-5, 0.5e-1])
Q_hi = np.array([1.4, 1.0e+1, 1.7, 1.5e-5, 2.0e-1])
Q_all = np.random.random((n_data, len(Q_lo))) * (Q_hi - Q_lo) + Q_lo

F_all = np.zeros(n_data)
for i in range(n_data):
 res = fcn(Q_all[i])
 F_all[i] = res

df_data = pd.DataFrame(
 data=Q_all,
 index=range(n_data),
 columns=Q_names
)
df_data["f"] = F_all

To perform empirical dimension reduction, we will carry out ordinary least
squares to regress the output f on the inputs rho, U, D, mu, eps. However,
if we log transform our inputs, any linear dimension reduction can be
interpreted as a product of the inputs [2]. This will allow us to combine
dimension reduction with dimensional analysis. To illustrate:

df_log = df_data.copy()
df_log[Q_names] = np.log(df_log[Q_names])
df_log

lm = smf.ols(
 "f ~ rho + U + D + mu + eps",
 data=df_log
).fit()

We extract the regression coefficients with the following recipe.

df_dr = pd.DataFrame({
 "rowname": lm.params.index[1:],
 "pi": lm.params.values[1:]
})
df_dr

 rowname pi
0 rho 0.000658
1 U -0.000247
2 D -0.049711
3 mu -0.000014
4 eps 0.045981

We now check the physical units of the proposed direction.

inner(df_dim, df_dr)

 rowname pi
0 M 0.000644
1 L -0.005936
2 T 0.000261

This is very nearly dimensionless. We can re-express this number in terms of our
standard basis.

express(df_dr, df_standard)

 rowname pi
0 Re -0.000412
1 R 0.047640

Re-expression reveals that the empirical dimension reduction has recovered the
relative roughness R, which fully describes the output variation in the
setting considered.

Lurking Variables

Finally, we slightly modify the problem above to demonstrate lurking variable detection.

Suppose that during data collection we did not know that eps is a physical
input. In this case, we would not know to vary it in our experiments, and it
might remain fixed to an unknown value. To model this, we fix eps=0.1 in data
generation.

Generate frozen-eps data
Fp_all = np.zeros(n_data)
Qp_all = Q_all
Qp_all[:, 4] = [0.1] * n_data

for i in range(n_data):
 Fp_all[i] = fcn(Qp_all[i])

df_frz = pd.DataFrame(
 data=Qp_all,
 index=range(n_data),
 columns=Q_names
)
df_frz["f"] = Fp_all

We repeat computing a linear dimension reduction on the frozen data.

df_frz_log = df_data.copy()
df_frz_log[Q_names] = np.log(df_frz_log[Q_names])
df_frz_log

lm_frz = smf.ols(
 "f ~ rho + U + D + mu",
 data=df_frz_log
).fit()

df_frz_dr = pd.DataFrame({
 "rowname": lm_frz.params.index[1:],
 "pi": lm_frz.params.values[1:]
})

Let’s inspect the physical dimensions of df_frz_dr.

inner(df_dim, df_frz_dr)

 rowname pi
0 M -0.005219
1 L -0.049977
2 T 0.005100

This direction is not dimensionless! This indicates that a lurking variable is
present, and it has units of L. This procedure has correctly identified the
presence of our lurking variable eps which has dimensions $[\epsilon] = L$.

References

[1] O. Reynolds, “An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels” (1883) Royal Society

[2] Z. del Rosario, M. Lee, and G. Iaccarino, “Lurking Variable Detection via Dimensional Analysis” (2019) SIAM/ASA Journal on Uncertainty Quantification

Dimensional Analysis Theory

TODO

References

Index

pybuck

	pybuck package
	Submodules

	pybuck.assess module

	pybuck.core module

	pybuck.transform module

	Module contents

pybuck package

Submodules

pybuck.assess module

pybuck.core module

pybuck.transform module

Module contents

 nav.xhtml

 Table of Contents

 		
 Welcome to pybuck’s documentation!

 		
 Overview

 		
 Installation

 		
 Application Guide

 		
 Setting up an analysis

 		
 Buckingham Pi

 		
 Re-expression

 		
 Empirical Dimension Reduction

 		
 Lurking Variables

 		
 References

 		
 Dimensional Analysis Theory

 		
 References

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

